Supervised UMAP
GPT5.icon
1) ラベル活用(半教師あり)で“混在回避”を明示的に優先
Supervised UMAP(umap.UMAP(..., y=cluster_labels, target_weight=0.5–0.9))
metric は埋め込みの性質に合わせて(L2正規化済なら cosine/angular が無難)。
n_neighbors=5–20(小さめで局所一貫性、分離が強まる)、min_dist=0.0–0.05(クラスターを締める)、repulsion_strength を上げる。
densMAP 版(densmap=True)は密度も保ちやすい(距離解釈が多少しやすくなる)。
UMAP
https://gyazo.com/6d6c2cb2a60f302b3fe173177caba13a